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Abstract

In this paper the coprime-factorized model predictive functional control for single-input single-
output processes with an arbitrary number of unstable poles is presented. The predictive functional
control algorithm gives a framework for designing the control for a wide range of processes. The
main idea in the case of unstable poles is based on the prediction of the process output based on
the coprime-factorized process model. The robust stability of the proposed control algorithm is also
discussed, using the small-gain theorem, which provides a sufficient condition for stability.
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1 Introduction

In real systems it is possible that multiple equilibrium points exist due to the degree of nonlinearity,

and sometimes some of these equilibrium points are unstable. The control of such systems is especially

difficult when they have more unstable modes, this is mainly because of the difficulty in ensuring the

robustness for the whole control system, as reported in Razon and Schmitz (1987).

Several different approaches exist for solving the problem of open-loop unstable process control. A

review of the methods, mainly based on classical PID controllers, is given by Chidambaram (1997).

Another solid framework for designing the control of unstable processes is the internal model control

strategy, which is discussed by DePaor (1985) and Kaya (2004). The most important analytical framework

for developing the control of open-loop unstable processes is the robust control design framework, which

also ensures robust control performance in the event of model uncertainty (Morari and Zafiriou, 1989),

(Doyle et al., 1990). In this framework several results were published using the stable factorization

approach given by Vidyasagar (1985). The extension of the factorization approach to decentralized

control by introducing decentralized stable factors, which allows the parametrization of the set of all the

decentralized controllers that could stabilize the closed-loop system, is given by Date and Chow (1994),

and the framework for the robust decentralized controller design of unstable systems is given by Loh and

Chiu (1997).
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The methods of classical model-based predictive control are not suitable for use with unstable plants

(Muske and Rawlings, 1993); this implies there is a limitation on the performance that can be achieved

using these controllers due to the structural error in the process model. The model-based predictive

control methods that are based on a description in the state-space domain or by transfer functions, such

as generalized predictive control and receding-horizon tracking control, are able to deal with unstable

plants. The linear model predictive control of unstable processes is given by Muske and Rawlings (1993).

The control is based on a quadratic performance criterion subject to the input and state constraints. The

model predictive formulation to control the open-loop unstable processes is reported by Nagrath et al.

(2002) as an optimization control problem. Some ideas for combining the robust design approaches and

the generalized predictive control algorithm are discussed by Banerjee and Shah (1995). A priori stability

conditions for an arbitrary number of unstable poles is given by Kouvaritakis et al. (1996).

The predictive functional control framework proposed by Richalet et al. (1978) can be used for a wide

range of different processes, even in the case of multivariable processes, as proposed in Škrjanc et al.

(2004). To extend the proposed framework to unstable processes the coprime factorization of the process

model is proposed. In this paper we propose an algorithm for single-input single-output systems (SISO).

The paper is organized in the following way: Section 2 introduces coprime-factorized model predic-

tive functional control (CFMPFC), Section 3 discusses the robust stability of CFMPFC, and Section 4

describes a simulation study of CFMPFC for processes with multiple unstable modes.

2 CFMPFC

In this section the coprime-factorized model predictive functional control will be introduced. The SISO

model with r unstable and n− r stable poles is described by the following discrete-time transfer function

G(z) =
B(z)

A−(z)A+(z)
(1)

where A−(z) stands for a polynomial with n− r stable poles and A+(z) stands for a polynomial with r

unstable poles. The polynomial A+(z) is denoted as

A+(z) = zr + a+
1 zr−1 + · · ·+ a+

r−1z + a+
r (2)

In general, it is always possible to find a coprime factorization of certain transfer functions, i.e., it is always

possible to find two interconnected transfer functions with no unstable pole-zero cancellations (Glover

and McFarlane, 1989), (Maciejowski, 2002). This means that it is possible to factorize the unstable part

of the process transfer function into the feedback interconnection of two stable systems, as given in Eq. 3.

1
A+(z)

=
1

A(z)
1

1− B(z)
A(z)

(3)
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Figure 1: The decomposed model.

where A(z) stands for a stable polynomial of order r defined by the designer

A(z) = zr + α1z
r−1 + · · ·+ αr−1z + αr (4)

The poles of the polynomial affect the performance and the robustness of the control system, which

will be discussed later. The numerator of the feedback transfer function equals

B(z) = β1z
r−1 + · · ·+ βr−1z + βr

where the coefficients of B(z) are calculated to fulfill Eq. 3. This means that the coefficient of the

polynomial B(z) should equal

βi = αi − a+
i , i = 1, . . . , r (5)

Fig. 1 shows the coprime-factorization of an unstable process model. The calculation of the model output,

taking into account the decomposition in Fig. 1, results in

Ym(k) = Gm1(z)U(z) + Gm2(z)Ym(z) (6)

where Ym(z) and U(z) are Z-transforms corresponding discrete variables, and Gm1(z) and Gm2(z) stand

for

Gm1(z) =
B(z)

A−(z)A(z)
, Gm2(z) =

B(z)
A(z)

(7)

The predictor proposed in Eq. 6 is inappropriate when the unstable process output is forecasted. Taking

into account the assumption of the equivalence between the model, ym(k), and process output, yp(k), the

suitable predictor model is obtained and is written as

Ym(k) = Gm1(z)U(z) + Gm2(z)Yp(z) (8)

where Yp(z) stands for the Z-transform of the process output, yp(k). The scheme of the coprime-factorized

predictor is presented in Fig. 2, where Gp(z) stands for an accurate representation of the real plant. The

prediction of the process model output is, therefore, composed of the prediction based on the input

signal, u(k), and the prediction based on the output process signal, yp(k). The H-step-ahead predic-

tion of the model output is then calculated in the state-space domain. The decomposed process model

transfer functions, Gm1(z) and Gm2(z) are based on the assumption of observability, transformed into
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Figure 2: The coprime-factorized predictor.

the observable canonical state-space form. The first transfer function, Gm1(z), is represented with the

state-space matrices Am1 ∈ Rn×n, Bm1 ∈ Rn×1, Cm1 ∈ R1×n and the second transfer function, Gm2(z),

with Am2 ∈ Rr×r, Bm2 ∈ Rr×1, Cm2 ∈ R1×r, assuming the dynamics where both input-output matrices,

D1 ∈ R and D2 ∈ R, are equal to zero. The outputs of the first and the second decomposed systems are

now written in the state-space domain as follows:

xm1(k + 1) = Am1xm1(k) + Bm1u(k), ym1(k) = Cm1xm1(k)

xm2(k + 1) = Am2xm2(k) + Bm2yp(k), ym2(k) = Cm2xm2(k) (9)

where xm1(k) and xm2(k) stand for the model states. The prediction of the model output is the sum of

the prediction to both decomposed systems, written as follows:

ym(k + H) = ym1(k + H) + ym2(k + H)

ym1(k + H) = Cm1

(
AH

m1
xm1(k) +

H∑

i=1

AH−i
m1

Bm1u(k + i− 1)

)

ym2(k + H) = Cm2

(
AH

m2
xm2(k) +

H∑

i=1

AH−i
m2

Bm2yp(k + i− 1)

)
(10)

The main idea of the predictive functional control is given in Eq. 11

w(k + H)− ym(k + H) = aH
r e(k) (11)

where w(k + H) is the H-step-ahead reference signal, ym(k + H) is the H-step-ahead prediction of the

process model output, and ar is the exponential factor (0 < ar < 1), which introduces an exponentially

decreasing control error e(k) = w(k)−yp(k) and defines the behavior of the closed-loop system, as follows

from Škrjanc and Matko (2000).

The H-step-ahead prediction in Eq. 10 assumes a constant input variable (mean level predictive

control) for the whole prediction horizon (u(k) = u(k + 1) = . . . = u(k + H − 1)), assuming a constant

reference variable w(k) for the whole prediction horizon (w(k) = w(k+1) = . . . = w(k+H)) and assuming

that the model output, ym(k), approximately follows the process output, yp(k), which means that the

term yp(k + i) in Eq. 10 equals yp(k + i) = w(k + i)− ai
re(k), for i = 1, · · · ,H, written in the following
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way

ym(k + H) = Cm1A
H
m1

xm1(k) + Γ1u(k) + Cm2A
H
m2

xm2(k) + Γ21w(k)− Γ22e(k) (12)

where the matrices Γ1, Γ21 and Γ22 are as follows

Γ1 = Cm1

(
AH

m1
− I1

)
(Am1 − I1)

−1
Bm1

Γ21 = Cm2

(
AH

m2
− I2

)
(Am2 − I2)

−1
Bm2

Γ22 = Cm2

(
AH

m2
− aH

r I2

)
(Am2 − arI2)

−1
Bm2

and I1 ∈ Rn×n and I2 ∈ Rr×r stand for the unity matrices.

Introducing Eq. 12 into Eq. 11, the following is obtained

w(k + H)− (
Cm1A

H
m1

xm1(k) + Γ1u(k) + Cm2A
H
m2

xm2(k) + Γ21w(k)− Γ22e(k)
)

= aH
r e(k) (13)

Solving Eq. 13 for the variable u(k), the control law of CFMPFC is obtained as follows

u(k) = g (w(k)− yp(k)) + Km1xm1(k) + Km2xm2(k) + Kypyp(k) (14)

where

g = g−1
0

(
1− aH

r + Γ22 − Γ21

)

g0 = Γ1

Km1 = g−1
0 Cm1

(
I1 −AH

m1

)

Km2 = g−1
0 Cm2

(
I2 −AH

m2

)

Kyp = −g−1
0 Γ21 (15)

Note that the control law from Eq. 15 is realizable if the gain g0 is non-zero. This is true if H ≥ ρ, where

ρ is the relative order of the system, as shown in Škrjanc et al. (2004). In the case of constraints of the

process variables, they can be taken into account inside the inner process model. The control signal, for

example, can be stripped out and in parallel led to the process input and to the inner process model.

2.1 Integral nature of CFMPFC

For the subsequent investigation, the basic control scheme will be rearranged into the scheme in Fig. 3,

where

F (z) = Km1 (zI1 −Am1)
−1

Bm1

H(z) = Km2 (zI2 −Am2)
−1

Bm2 + Kyp (16)

A very important feature of all control algorithms is their behavior at low frequencies. The control
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Figure 3: The control scheme of CFMPFC.

algorithm should be able to suppress the control error in the steady-state, i.e., the control law should

have an integral nature.

The control law of CFMPFC in the Z-domain is written as:

U(z) = (1− F (z))−1 (gE(z) + H(z)Yp(z)) (17)

where E(z) and Yp(z) stand for the Z-transforms of the control error e(k) and the output variable yp(k),

respectively. To prove the integral nature we have to investigate the behavior of the control law at low

frequencies, i.e., we have to show that the transfer function between the control error and the control

variable has a pole at z = 1. By calculating the denominator of the transfer functions in Eq. 17 at z = 1

and by taking into account Eq. 15 and Eq. 16 the following is obtained:

1− F (1) = 1−Km1 (zI1 −Am1)
−1

Bm1 (18)

By taking into account Eq. 15 it is obvious that:

1− F (1) = 1− g−1
0 g0 = 0 (19)

This proves that the control law of CFMPFC is indeed integral in nature, i.e., yp asymptotically tracks

a step reference signal.

3 Robust stability

The internal stability of the control system with the nominal plant G(z) (a plant without uncertainty,

Gp(z) ≡ G(z)) can be investigated by studying the roots of the closed-loop denominator, which is given

as Pcl(z) = 1−F (z) + G(z)(g−H(z)). The performance and robustness of model-based control schemes

depend mainly on the uncertainty between the model and the plant. In the case of a stabilization

problem, the most important factor is the robust stability of the closed-loop system. One of the most

important tools for investigating the stability of the system in the presence of model-plant uncertainty is
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the small-gain theorem, as discussed by Doyle et al. (1990). The small-gain theorem provides a sufficient

condition for the stability of the control system. This means that a violation of the small-gain stability

criteria, even with an exact knowledge of the uncertainty, may or may not lead to instability (Morari and

Zafiriou, 1989).

Additive perturbation, coprime-factor perturbation, multiplicative perturbation at the control input

and multiplicative perturbation at the control output, are the main forms of unstructured uncertainties

in linear systems. In fact all these uncertainties can be presented by additive perturbations, as shown by

Wang (1997).

Therefore, in our case the uncertainty between the actual plant Gp(z) and the plant model G(z) will

be described by an additive unstructured uncertainty

Gp(z) = G(z) + ∆a(z) (20)

The structure of ∆a(z) is usually unknown but stable, and it is an upper-bounded function in the

frequency domain

|∆a(e−jωT )| < δa(ω), ∀ ωT ∈ [0, π] (21)

where T stands for the sampling time. The upper bound δa(ω) can be approximated from experiment.

Taking into account Eq. 20 and Eq. 21, the family of plants, Ga, can be described by

Ga = {Gp : |Gp(e−jωT )−G(e−jωT )| < δa(ω), ∀ ωT ∈ [0, π]} (22)

In Fig. 3 the coprime-factorized model predictive functional control scheme is presented, where ∆a repre-

sents the additive unstructured uncertainty and g, F (z) and H(z) stand for the controller that stabilizes

the nominal plant. The controller can also be denoted by the triplet (g, F,H). A rearrangement of

the system in Fig. 3, where all the external inputs and outputs are neglected, results in a general M-∆

interconnection structure (Fig. 4), as defined by Morari and Zafiriou (1989). The interconnection matrix

M(z)

Da
(z)

Figure 4: The interconnection structure.

M derived from Fig. 3 equals

M(z) =
−g + H(z)

1− F (z)−G(z)H(z) + gG(z)
(23)
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Lemma 1 (Robust stability and the robust stability margin for additive perturbation).

Assuming that all plants Gp(z) in the family Ga defined in Eq. 22 have the same number of unstable poles

(outside the unity circle in the z-plane) and that the controller (g, F,H) internally stabilizes the nominal

plant G, then the system is robustly stable if and only if

‖δa(z)M(z)‖∞ , sup
ω
|M(e−jωT )δa(e−jωT )| < 1 (24)

or in more conservative form:

|M(e−jωT )| · |δa(e−jωT )| < 1, ∀ ωT ∈ [0, π] (25)

If we define the upper robust stability margin δa(ω) as

δa(ω) , 1
|M(e−jωT )| , ωT ∈ [0, π] (26)

then the system is robustly stable if and only if

|δa(e−jωT )| < δa(ω), ∀ ωT ∈ [0, π] (27)

Lemma 1 is the result of applying the small-gain theorem to the interconnection structure from Fig. 4.

Taking into account Lemma 1 and Eq. 23 the following theorem for the robust stability of CFMPFC is

obtained.

Theorem 1 (Robust stability of CFMPFC for additive perturbation). Assuming that all plants

Gp(z) in the family Ga

Ga = {Gp : |Gp(e−jωT )−G(e−jωT )| < δa(ω),

∀ ωT ∈ [0, π]} (28)

have the same number of unstable poles, and that the controller (g, F (z),H(z)) internally stabilizes the

nominal plant G(z), then the system is robustly stable if and only if

∣∣∣∣
−g + H(e−jωT )

1− F (e−jωT )−G(e−jωT ) (−g + H(e−jωT ))
δa(e−jωT )

∣∣∣∣ < 1 (29)

or in more conservative form:

∣∣∣∣
−g + H(e−jωT )

1− F (e−jωT )−G(e−jωT ) (−g + H(e−jωT ))

∣∣∣∣ ·
∣∣δa(e−jωT )

∣∣ < 1

∀ ωT ∈ [0, π] (30)
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Remark 1 (Robust upper-stability margin of CFMPFC for additive perturbation). The robust

upper-stability margin δa(ω) of CFMPFC for additive unstructured perturbations is defined as follows:

δa(ω) ,
∣∣∣∣∣
1− F (e−jωT )−G(e−jωT )

(−g + H(e−jωT )
)

−g + H(e−jωT )

∣∣∣∣∣ , ωT ∈ [0, π] (31)

According to the robust upper-stability margin the system is robustly stable if and only if

∣∣δa(e−jωT )
∣∣ < δa(ω), ∀ ωT ∈ [0, π] (32)

4 Simulation study

The approach to the tuning of CFMPFC presented here is based on shaping the frequency-domain

robust-stability margins. The approach also gives an insight into the role of the tuning parameters and

its influence on stability. The simulation study was carried out on a discrete transfer function with two

unstable and one stable mode, given as follows:

G(z) =
B(z)
A(z)

=
0.0312z2

(z − 1.0126) (z − 1.0050) (z − 0.9512)
(33)

with the sampling time T = 0.05s. The unstable polynomial A+(z) is then

A+(z) = z2 + a+
1 z + a+

2 = z2 − 2.0176z + 1.0177 (34)

The polynomial A(z) has the main effect on the robustness of the whole system. This design polyno-

mial is of the order r and its coefficients should be defined by the designer. The polynomial is defined as

follows

A(z) = z2 + α1z + α2 = (z − λ)r (35)

This means that the design of the polynomial A(z) is reduced to only one parameter (λ). By taking into

account Eq. 5 and Eq. 35 the coefficients of the polynomial B(z) in our example equal

β1 = −2λ + 2.0176 (36)

β2 = λ2 − 1.0177 (37)

The robust-stability margins depend mainly on the parameters λ and ar. In Fig. 5 the robust-stability

margins are shown for different values of the parameter λ, where ar = 0.9959 and H = 3. It is shown

that the robust stability at higher frequencies increases with decreasing λ, but at lower frequencies λ has

almost no influence on the robust stability. The robust stability is discussed for the case of the model

mismatch given by the additive uncertainty

∆a(z) =
−0.025z + 0.0336
(z − 0.1353)A(z)
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Figure 5: The robust-stability margins for different values of λ.
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This uncertainty involves a parasitic high-frequency pole and uncertainty at low frequencies. In Fig. 6 the

closed-loop system responses in the case of a different λ (ar = 0.9959,H = 3) parameter and assuming

an additive uncertainty are shown. In Fig. 7 the robust-stability margins are shown for different values

of the parameter ar, where λ = 0.9835,H = 3. It is shown that the robust stability at higher frequencies

increases with increasing ar, but at lower frequencies ar has almost no influence on the robust stability.

5 Conclusion

In this paper the coprime-factorized model predictive functional control is given for single-input single-

output systems with multiple unstable modes. The proposed approach is an extension of the well-known

predictive functional control, which can be used to control a wide range of different processes, to the

unstable systems. The robust stability of the proposed control algorithm is also discussed using the

small-gain theorem, which provides a sufficient condition for the stability of the control system.
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